Pore ​​formation and polymorphism in small iron oxide nanoparticles

  • Machala, L., Tuček, JI & Zboril, R. Polymorphic transformations of nanoscale iron(III) oxide: a review. Chem. mater. 233255–3272 (2005).

    Article – Commodity

    Google Scholar

  • Ayyub, P., Palkar, VR, Chattopadhyay, S. & Multani, M. Effect of crystal size reduction on lattice symmetry and its cooperative properties. Phys. Reverend B 516135-6138 (1995).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Svendsen, MB Beta-Fe2O3 – A new ferric oxide structure. Sciences. nat. 145 (1958).

    Google Scholar

  • Lee, c. et al. Hollow iron oxide nanoparticles synthesized by chemical vapor condensation. J Res Nanoparticles. 6627-631 (2004).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Gonzalez-Carreno, T., Morales, M. & Serna, C. Fine β-Fe2O3 particles of cubic structure obtained by spray pyrolysis. J Matter. Sciences. Lett. 13381-382 (1994).

    CAS
    Article – Commodity

    Google Scholar

  • Sakurai, S.; , Namai, A.; Hashimoto, K.; and Ohkoshi, S.-I. The first observation of the phase shift for all four phases of Fe2O3 (γ → ε → β → α-phase). J. Chem. a company 13118299-18303 (2009).

    CAS
    Article – Commodity

    Google Scholar

  • Emery, JD et al. Atomic layer deposition of unstable β-Fe2O3 via a symmetric epitaxy for photo-assisted water oxidation. ACS application. mater. interfaces 621894–21900 (2014).

    CAS
    Article – Commodity

    Google Scholar

  • Suresh, A., Mayo, M. J., Porter, WD & Rawn, C. J. Crystallite and grain size-dependent phase shifts in yttria-doped zirconia. J. Chem. a company 86360–362 (2003).

    CAS

    Google Scholar

  • Diehm, PM, Ágoston, P. & Albe, K. Size-dependent lattice expansion in nanoparticles: fact or anomaly?. ChemPhysChem 132443 – 2454 (2012).

    CAS
    Article – Commodity

    Google Scholar

  • Cheow, WS, Li, S. & Hadinoto, K. Spray drying formulation of hollow spherical clusters of silica nanoparticles by experimental design. Chem. M. Precision. affiliate. 88673-685 (2010).

    CAS
    Article – Commodity

    Google Scholar

  • Schilling, C., Thessmann, R, Notthoff, C. & Winterter, M. Synthesis of small hollow nanoparticles of zinc oxide from the gas phase. part. part. the system. Personalities. 30434-437 (2013).

    CAS
    Article – Commodity

    Google Scholar

  • Kirkendall, L.T. & Upthegrove, C. Prevalence of copper and zinc in alpha copper. Across. the love 1337 (1939).

    Google Scholar

  • Glass. et al. Hollow iron oxide nanoparticles for application in lithium-ion batteries. nano lite. 122429–2435 (2012).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Ma, fx et al. Construction of hollow FeP nanoparticles densely encapsulated in carbon nanosheet frameworks for efficient and durable electrocatalytic hydrogen production. case. Sciences. 61801490 (2019).

    Article – Commodity

    Google Scholar

  • Ziarani, G.M., Malmir, M., Lashgari, N. & Badiei, A. The role of hollow magnetic nanoparticles in drug delivery. RSC Adv. 925094-25106 (2019).

    advertisements
    Article – Commodity

    Google Scholar

  • Hrbac, J., Halouzka, V., Zboril, R., Papadopoulos, K. & Triantis, T. electrolysis 191850-1854 (2007).

    CAS
    Article – Commodity

    Google Scholar

  • Hassen, b. physical metallurgy 176 (Springer-Verlag, Cham, 1974).

    the book

    Google Scholar

  • Winter, M.; Nanocrystalline ceramics: synthesis and structure 10-11 (Springer Verlag, Cham, 2002).

    the book

    Google Scholar

  • Rossonin, c. et al. Controlled oxidation of iron nanoparticles in chemical vapor synthesis. J Res Nanoparticles. 162270 (2014).

    advertisements
    Article – Commodity

    Google Scholar

  • Levish, A. & Winterer, M. Nanoparticles are generated by combining the chemical vapor synthesis of plasma, hot wall, and microwave plasma. MRS Adv. 3213-218 (2018).

    CAS
    Article – Commodity

    Google Scholar

  • Winterter, M.; Discover pathways to improve the properties of nanoparticles. Chem. M. Sciences. 186135–141 (2018).

    CAS
    Article – Commodity

    Google Scholar

  • Lutterotti, L., Matthies, S. & Wenk, H. MAUD: An easy Java program for analyzing materials using diffraction. the news. CPD 2114-15 (1999).

    Google Scholar

  • damage, T. et al. Crystal structure of β-Fe2O3 and surface phase transformation into α-Fe2O3. Crest. dis growth. 13770-774 (2013).

    CAS
    Article – Commodity

    Google Scholar

  • Shane, H.; Study on the structure of magimite (Y-Fe2O3). J. Korean ceram. a company 351113-1119 (1998).

    CAS

    Google Scholar

  • Blake, R., Hecivic, R., Zoltay, T and Wenger, LW. Refinement of hematite structure. I be. minute. 51123-129 (1966).

    CAS

    Google Scholar

  • Bearden, J.A. & Burr, A. Reassessment of X-ray atomic energy levels. Rev. DoD. Phys. 39125 (1967).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Rehr, J. J., Kas, J. J., Vila, F. D., Prange, MP & Jorissen, K. Parameter-free calculations of X-ray spectra using FEFF9. Phys. Chem. Chem. Phys. 125503-5513 (2010).

    CAS
    Article – Commodity

    Google Scholar

  • Winterer, M. xafsX: a program for processing, analyzing, and reducing X-ray absorption microstructure spectra (XAFS). Int Tables Crystologr. 15 (2020).

    Google Scholar

  • Winter, M.; Reverse Monte Carlo analysis of the extended X-ray absorbing microstructure spectra of monoclinic and amorphous zirconia. Int J. Apple. Phys. 885635-5644 (2000).

    advertisements
    CAS
    Article – Commodity

    Google Scholar

  • Innes, T.; et al. The structure and magnetic properties of iron nanoparticles are stabilized in carbon. Int J. Apple. Phys. 99044306 (2006).

    advertisements
    Article – Commodity

    Google Scholar

  • Condon, JB Determination of surface area and porosity by decomposition: measurement, classical theories, and quantum theory 11-14 (Elsevier, Amsterdam, 2006).

    Google Scholar

  • me, and . et al. Mechanisms of morphological anisotropy of hematite crystals with Al substitution: modulation of lattice iron and oxygen densities. Sciences. re come back. 61-10 (2016).

    Article – Commodity

    Google Scholar

  • Corrias, A., Ennas, G., Mountjoy, G. & Paschina, G. X-ray absorption spectroscopy study of the Fe K edge in nanocomposites and in Fe2O3–SiO2 nanocomposites. Phys. Chem. Chem. Phys. 21045-1050 (2000).

    CAS
    Article – Commodity

    Google Scholar

  • Levish, A. & Winterer, M. In situ cell X-ray absorption spectroscopy of low-volatile composite vapors. pastor. know tool 91063101 (2020).

    advertisements
    CAS
    Article – Commodity

    Google Scholar