Astronomers think they’ve figured out how to predict a supernova: ScienceAlert

in recent study sent to High-energy astrophysical phenomenaa team of researchers from Japan discussed strategies for observing, and possibly predicting, the initial signatures of a Local Type II explosion and a galactic supernova (SNe).

This study has the potential to help us better understand how and when supernovae can occur throughout the universe, with supernovae being the plural form of supernova (SN).

But how important is it to discovering supernovae before they actually happen?

“In my view, it’s important in two ways,” said Daiichi Tsuna, an astrophysicist at the University of Tokyo’s Early Universe Research Center and lead author of the study.

“First, while we know that SNe supernovae are explosions that signal the death of massive stars, what happens near the end of their lives remains a mystery. The standard theory of stellar evolution.

“Our research paper claims that we can investigate in depth this precursor with future observations, which can help deepen our understanding of stellar evolution and refine current theory. Second, finding SN precursors will allow for very early warning of SN in the near future, and will help extend the time frame Available for multi message format (light, neutrinosAnd the gravitational waves) Notes “.

For the study, the researchers used open source code flakes (a complete history of interaction-supported supernovae) To create a theoretical model of such a discharge from the explosion of the mass of a red giant star.

This is interesting since the star Betelguese, who was in 2019 It is observed to dim in brightnesswhich has sparked discussions about the possibility of a supernova, is also a red giant star.

As it turns out, Betelguese is nearing the end of her life, but a Study 2021 He said it was not set to erupt for another 100,000 years. But what implications could this search for Betelguese have?

Betelgeuse It is a red giant giant, which is exactly the type of star we studied in this paper,” Tsuna explained. Thus, if Betelgeuse erupts too soon, it may display this type of precursor emission just before the SN. Since Betelgeuse is very close to us, neutrino Detectors may find neutrinos emitted as early as days before SN. We can do multi-message astronomy even before the SN explodes! “

The study results indicate that the volcanic light curves are fueled by a brief pulse of shock waves lasting only a few days, followed by a much longer cooling discharge lasting for hundreds of days.

For low-energy eruptions, this period is followed by a period of dark peak fueled by what is known as the bound envelope, and receding.

The study concludes by saying that such collective eruptions “could serve as an early warning of a close SN neutron future, which will be important for multi-message studies of SNe nucleus collapse.”

“One thing I would like to stress is that we have a bright future to discover these types of rather bleak precursors,” Tsuna said.

“For example, within a few years, the Rubin Observatory will conduct large-scale field survey observations with a sensitivity much deeper than current surveys. It will be sensitive enough to actually detect these types of emissions and could be an investigation of the remarkable final stages of life for a massive star.”

This article was originally published by universe today. Read the original article.